熔化炉与熔炼炉的区别

烧嘴式蓄热式加热炉  3. 1  蓄热烧嘴的结构  烧嘴采用空气、煤气组合式, 由空气蓄热烧嘴、煤气蓄热烧嘴组合而成, 上加热煤气喷口在下, 空气喷口在上, 下加热烧嘴则反之; 尽量在钢坯的上下表面形成还原性气氛, 降低氧化烧损和表面脱碳。蓄热式烧嘴的设计既要考虑低热值燃气的燃烧混合问题, 又要保证煤气的完全燃尽, 同时实现炉膛温度的均匀性, 因此采用双流股蓄热式烧嘴形式。  燃烧喷口是燃烧系统的关键部位, 合理的燃烧组织有赖于此, 在燃烧组织上既要确保燃气在炉内充分燃烧, 不会在对面的蓄热体内继续燃烧而对其造成损坏, 同时又要合理促成低氧燃烧的实现, 避免出现局部的高温过热; 既强化炉温的均匀性, 减少NO x 等有害气体的生成, 又减小高温下脱碳的发生。因此, 在喷口设计上要选择最优的气体出口速度和混合喷射角度。  燃料在喷口处边混合边燃烧, 空气、煤气在喷出过程中卷入周围的炉气, 稀释空煤气浓度, 低氧燃烧, 使烟气中NO x 的产生大大降低, 减少了有害气体的排放量。由于采用集中点火烘炉方式, 只要炉气温度高于700 ℃, 高炉煤气喷入炉内就会燃烧, 且连续式加热炉并不会频繁地冷炉启动, 因此将高温段蓄热式烧嘴配带自动点火及火焰检测系统是没有必要的, 这样既简化了烧嘴结构、降低了投资, 也减少了高温段存在的点火烧嘴经常烧损的情况。  3. 2  蓄热体  蓄热体有陶瓷小球和陶瓷蜂窝体, 发展趋势是采用陶瓷蜂窝体。其高温段材质为高纯铝质材料,有较高的耐火度和良好的抗渣性; 中部采用莫来石材料; 低温段材质为堇青石, 其特点是在低于1000 ℃的工况下具有较好的抗腐蚀和耐急冷急热性。蜂窝体的前端增加刚玉挡砖, 减少高温炉膛对蜂窝体的辐射, 同时可增加蜂窝体的堆放稳定性。与颗粒状蓄热体(球形蓄热体) 比较, 蜂窝状蓄热体有如下优点:单位体积换热面积大, 100 孔/平方英寸的蜂窝体是Φ15 mm 球比表面积的5. 5 倍, Φ20 mm 球的7 倍。在相同条件下, 将等质量气体换热到同一温度时的蜂窝体体积仅为球状蓄热体的1/3~1/4 , 重量仅为球的1/10 左右, 这就意味着蜂窝体蓄热燃烧器构造更轻便、结构更紧凑。蜂窝体壁很薄仅0. 5 ~1 mm , 透热深度小, 因而蓄热、放热速度快, 温度效率高, 换向时间仅为30 ~45 s , 这比球状蓄热体的换向时间3 min 大大缩短, 更利于均匀炉内温度场, 保证钢坯均匀加热, 这一点对加热合金钢、高碳钢尤为有利。按照蜂窝体内气流通道规则, 阻力损失仅为球状的1/3~1/4。球形蓄热体气流阻力损失随空气流速增大而增大, 其变化规律为幂函数关系, 球径大则阻力变小, 但蓄热室结构也要相应增大。  蜂窝体  由于有较高压力的气体频繁换向, 起到了吹刷通道作用, 故不易产生灰尘沉积堵塞。对于炉膛较宽的炉子, 相对应炉长较短, 炉两侧可供布置烧嘴的空间较小, 采用比表面积小的小球时常常由于空间的限制使得蓄热能力不足。因此, 在采用蓄热式烧嘴形式的加热炉当中, 应用比表面积大于小球几倍的蜂窝体是必然的选择。采用陶瓷小球不方便在线更换, 而陶瓷蜂窝体则有利于蓄热体的在线更换, 这可以保证非常好的生产连续性。  3. 3  换向系统  高炉煤气换向系统、空气/烟气换向系统均采用全分散换向方式, 换向阀门全部为气动, 以洁净的压缩空气作为动力源, 气源压力≥0. 3 MPa 。高炉煤气/烟气采用快速切断换向阀, 即一只煤气蓄热式烧嘴采用两台快速切断阀, 快切阀采用三偏心结构, 动作灵活、可靠, 更换简单。空气/烟气采用三通换向阀切换, 阀门驱动可采用液动,运行稳定, 但投入成本、运行成本高。  3. 4  工作方式  蓄热燃烧器为成对换向操作, 换向周期可调。正常工作时换向周期30 - 45 s 左右, 采用双重信号控制: 以时间和烟气温度为控制参数。换向系统采用PLC 可编程控制器控制, 可完成自动程序换向控制、手动强制换向控制, 设有功能显示、工作状态显示等, 使操作者对蓄热燃烧系统工作情况一目了然, 操作和监视十分方便。  3. 5  全分散换向系统技术特点  (1) 每个烧嘴的可单独调节和上下加热烧嘴能力的合理搭配, 使加热炉各段上下加热温度的调节非常方便。(2) 在同侧同向换向的基础上, 可以实现每相邻两只烧嘴交错燃烧, 此种方式优化炉膛气流的组成, 有利于均匀炉温, 提高加热质量。(3) 每两组烧嘴使用一套换向系统, 可以在任何一套系统发生故障时, 在其它烧嘴均正常工作的状态下排除故障, 保证操作的连续性和生产稳定性, 而不致于象集中式换向那样要将出现问题的那一段全部停下来。(4) 换向阀可以与燃烧喷口之间就近布置, 减短了换向阀与喷口之间的换向盲区, 最大限度地减少了交叉污染带来的不安全因素。燃烧间断时间短, 因此换向时管道内残留煤气损失较少, 更有利于节能。(5) 采用轮序换向方式, 每套换向装置换向时对炉压的影响大为减小, 精确控制了各部分炉温、炉压, 提高了炉子的控制性能和钢坯加热质量。与集中式换向相比管道复杂, 不容易布置。  3. 6  数字化脉冲蓄热式燃烧技术  在常规分段比例燃烧控制技术的前提下, 可应用数字化脉冲蓄热式燃烧技术。石钢棒材厂加热炉在国内首次采用数字化脉冲蓄热式燃烧技术, 这一技术不仅使蓄热式技术本身的特性得以更高的发挥, 同时非常适应于冷热装变化较大、产量变化较大以及各钢种经常变化的加热要求。由于将原有“段”的概念予以虚拟, 因此可以说此种燃烧方式能够满足任何钢种的加热需求, 为新钢种的开发、生产打下坚实的基础。脉冲技术具有如下特点1) 时序加热。烧嘴只有两种工作状态: 满负荷工作和不工作, 只是通过调整两种状态的时间比进行温度调节, 需要低温控制时仍能保证烧嘴工作在最佳燃烧状态。采用脉冲燃烧控制方式, 可以将煤气压力和空气压力一次性调整到合适值, 在系统投入运行后, 只需保持这两个压力稳定即可。  因此, 烧嘴总是以最大效率、在最小过剩空气量的条件下运行。(2) 实现加热区域任意“虚拟”的划分。虚拟的加热段及均热段(每对烧嘴独立控制) 采用数字化控制技术, 加热炉能力可以根据产量调整, 同时确保产品获得良好的均匀性。计算机可以根据一系列已装炉坯料的热量数据, 对每对烧嘴进行实时设定, 可以设定开或关一些烧嘴, 精确控制加热炉加热能力, 在任何工况条件下, 燃料综合消耗量在整个轧机生产范围内降低。  4  结语  从长期的市场角度看, 钢材多品种、小批量的需求变化日益增加; 从短期的钢坯加热角度看, 钢坯冷热装的情况会经常存在。烧嘴式蓄热式加热炉方案符合上述钢材加热要求。此外, 蓄热式烧嘴式加热炉炉墙两侧留有便于检修的人孔门和扒渣门,这是唯有采用烧嘴结构形式才能做到的; 对于高热值气体燃料, 可直接冷炉点火升温, 不需要单独的点火烧嘴; 维护工作量稍大, 但检修时间短, 停炉时间短。国内蓄热式加热炉发展很快, 现在还不能讲哪一种形式是最先进、最成熟的, 都多少存在一些问题, 蓄热体的寿命、蓄热式加热炉的寿命都有待提高等, 但蓄热式烧嘴式加热炉是一种发展方向。


梦萍 发布于  2022-3-21 23:43 

炼铁热风炉

烧嘴式蓄热式加热炉  3. 1  蓄热烧嘴的结构  烧嘴采用空气、煤气组合式, 由空气蓄热烧嘴、煤气蓄热烧嘴组合而成, 上加热煤气喷口在下, 空气喷口在上, 下加热烧嘴则反之; 尽量在钢坯的上下表面形成还原性气氛, 降低氧化烧损和表面脱碳。蓄热式烧嘴的设计既要考虑低热值燃气的燃烧混合问题, 又要保证煤气的完全燃尽, 同时实现炉膛温度的均匀性, 因此采用双流股蓄热式烧嘴形式。  燃烧喷口是燃烧系统的关键部位, 合理的燃烧组织有赖于此, 在燃烧组织上既要确保燃气在炉内充分燃烧, 不会在对面的蓄热体内继续燃烧而对其造成损坏, 同时又要合理促成低氧燃烧的实现, 避免出现局部的高温过热; 既强化炉温的均匀性, 减少NO x 等有害气体的生成, 又减小高温下脱碳的发生。因此, 在喷口设计上要选择最优的气体出口速度和混合喷射角度。  燃料在喷口处边混合边燃烧, 空气、煤气在喷出过程中卷入周围的炉气, 稀释空煤气浓度, 低氧燃烧, 使烟气中NO x 的产生大大降低, 减少了有害气体的排放量。由于采用集中点火烘炉方式, 只要炉气温度高于700 ℃, 高炉煤气喷入炉内就会燃烧, 且连续式加热炉并不会频繁地冷炉启动, 因此将高温段蓄热式烧嘴配带自动点火及火焰检测系统是没有必要的, 这样既简化了烧嘴结构、降低了投资, 也减少了高温段存在的点火烧嘴经常烧损的情况。  3. 2  蓄热体  蓄热体有陶瓷小球和陶瓷蜂窝体, 发展趋势是采用陶瓷蜂窝体。其高温段材质为高纯铝质材料,有较高的耐火度和良好的抗渣性; 中部采用莫来石材料; 低温段材质为堇青石, 其特点是在低于1000 ℃的工况下具有较好的抗腐蚀和耐急冷急热性。蜂窝体的前端增加刚玉挡砖, 减少高温炉膛对蜂窝体的辐射, 同时可增加蜂窝体的堆放稳定性。与颗粒状蓄热体(球形蓄热体) 比较, 蜂窝状蓄热体有如下优点:单位体积换热面积大, 100 孔/平方英寸的蜂窝体是Φ15 mm 球比表面积的5. 5 倍, Φ20 mm 球的7 倍。在相同条件下, 将等质量气体换热到同一温度时的蜂窝体体积仅为球状蓄热体的1/3~1/4 , 重量仅为球的1/10 左右, 这就意味着蜂窝体蓄热燃烧器构造更轻便、结构更紧凑。蜂窝体壁很薄仅0. 5 ~1 mm , 透热深度小, 因而蓄热、放热速度快, 温度效率高, 换向时间仅为30 ~45 s , 这比球状蓄热体的换向时间3 min 大大缩短, 更利于均匀炉内温度场, 保证钢坯均匀加热, 这一点对加热合金钢、高碳钢尤为有利。按照蜂窝体内气流通道规则, 阻力损失仅为球状的1/3~1/4。球形蓄热体气流阻力损失随空气流速增大而增大, 其变化规律为幂函数关系, 球径大则阻力变小, 但蓄热室结构也要相应增大。  蜂窝体  由于有较高压力的气体频繁换向, 起到了吹刷通道作用, 故不易产生灰尘沉积堵塞。对于炉膛较宽的炉子, 相对应炉长较短, 炉两侧可供布置烧嘴的空间较小, 采用比表面积小的小球时常常由于空间的限制使得蓄热能力不足。因此, 在采用蓄热式烧嘴形式的加热炉当中, 应用比表面积大于小球几倍的蜂窝体是必然的选择。采用陶瓷小球不方便在线更换, 而陶瓷蜂窝体则有利于蓄热体的在线更换, 这可以保证非常好的生产连续性。  3. 3  换向系统  高炉煤气换向系统、空气/烟气换向系统均采用全分散换向方式, 换向阀门全部为气动, 以洁净的压缩空气作为动力源, 气源压力≥0. 3 MPa 。高炉煤气/烟气采用快速切断换向阀, 即一只煤气蓄热式烧嘴采用两台快速切断阀, 快切阀采用三偏心结构, 动作灵活、可靠, 更换简单。空气/烟气采用三通换向阀切换, 阀门驱动可采用液动,运行稳定, 但投入成本、运行成本高。  3. 4  工作方式  蓄热燃烧器为成对换向操作, 换向周期可调。正常工作时换向周期30 - 45 s 左右, 采用双重信号控制: 以时间和烟气温度为控制参数。换向系统采用PLC 可编程控制器控制, 可完成自动程序换向控制、手动强制换向控制, 设有功能显示、工作状态显示等, 使操作者对蓄热燃烧系统工作情况一目了然, 操作和监视十分方便。  3. 5  全分散换向系统技术特点  (1) 每个烧嘴的可单独调节和上下加热烧嘴能力的合理搭配, 使加热炉各段上下加热温度的调节非常方便。(2) 在同侧同向换向的基础上, 可以实现每相邻两只烧嘴交错燃烧, 此种方式优化炉膛气流的组成, 有利于均匀炉温, 提高加热质量。(3) 每两组烧嘴使用一套换向系统, 可以在任何一套系统发生故障时, 在其它烧嘴均正常工作的状态下排除故障, 保证操作的连续性和生产稳定性, 而不致于象集中式换向那样要将出现问题的那一段全部停下来。(4) 换向阀可以与燃烧喷口之间就近布置, 减短了换向阀与喷口之间的换向盲区, 最大限度地减少了交叉污染带来的不安全因素。燃烧间断时间短, 因此换向时管道内残留煤气损失较少, 更有利于节能。(5) 采用轮序换向方式, 每套换向装置换向时对炉压的影响大为减小, 精确控制了各部分炉温、炉压, 提高了炉子的控制性能和钢坯加热质量。与集中式换向相比管道复杂, 不容易布置。  3. 6  数字化脉冲蓄热式燃烧技术  在常规分段比例燃烧控制技术的前提下, 可应用数字化脉冲蓄热式燃烧技术。石钢棒材厂加热炉在国内首次采用数字化脉冲蓄热式燃烧技术, 这一技术不仅使蓄热式技术本身的特性得以更高的发挥, 同时非常适应于冷热装变化较大、产量变化较大以及各钢种经常变化的加热要求。由于将原有“段”的概念予以虚拟, 因此可以说此种燃烧方式能够满足任何钢种的加热需求, 为新钢种的开发、生产打下坚实的基础。脉冲技术具有如下特点1) 时序加热。烧嘴只有两种工作状态: 满负荷工作和不工作, 只是通过调整两种状态的时间比进行温度调节, 需要低温控制时仍能保证烧嘴工作在最佳燃烧状态。采用脉冲燃烧控制方式, 可以将煤气压力和空气压力一次性调整到合适值, 在系统投入运行后, 只需保持这两个压力稳定即可。  因此, 烧嘴总是以最大效率、在最小过剩空气量的条件下运行。(2) 实现加热区域任意“虚拟”的划分。虚拟的加热段及均热段(每对烧嘴独立控制) 采用数字化控制技术, 加热炉能力可以根据产量调整, 同时确保产品获得良好的均匀性。计算机可以根据一系列已装炉坯料的热量数据, 对每对烧嘴进行实时设定, 可以设定开或关一些烧嘴, 精确控制加热炉加热能力, 在任何工况条件下, 燃料综合消耗量在整个轧机生产范围内降低。  4  结语  从长期的市场角度看, 钢材多品种、小批量的需求变化日益增加; 从短期的钢坯加热角度看, 钢坯冷热装的情况会经常存在。烧嘴式蓄热式加热炉方案符合上述钢材加热要求。此外, 蓄热式烧嘴式加热炉炉墙两侧留有便于检修的人孔门和扒渣门,这是唯有采用烧嘴结构形式才能做到的; 对于高热值气体燃料, 可直接冷炉点火升温, 不需要单独的点火烧嘴; 维护工作量稍大, 但检修时间短, 停炉时间短。国内蓄热式加热炉发展很快, 现在还不能讲哪一种形式是最先进、最成熟的, 都多少存在一些问题, 蓄热体的寿命、蓄热式加热炉的寿命都有待提高等, 但蓄热式烧嘴式加热炉是一种发展方向。


梦萍 发布于  2022-3-21 23:41 

炼钢炉怎么加热

烧嘴式蓄热式加热炉  3. 1  蓄热烧嘴的结构  烧嘴采用空气、煤气组合式, 由空气蓄热烧嘴、煤气蓄热烧嘴组合而成, 上加热煤气喷口在下, 空气喷口在上, 下加热烧嘴则反之; 尽量在钢坯的上下表面形成还原性气氛, 降低氧化烧损和表面脱碳。蓄热式烧嘴的设计既要考虑低热值燃气的燃烧混合问题, 又要保证煤气的完全燃尽, 同时实现炉膛温度的均匀性, 因此采用双流股蓄热式烧嘴形式。  燃烧喷口是燃烧系统的关键部位, 合理的燃烧组织有赖于此, 在燃烧组织上既要确保燃气在炉内充分燃烧, 不会在对面的蓄热体内继续燃烧而对其造成损坏, 同时又要合理促成低氧燃烧的实现, 避免出现局部的高温过热; 既强化炉温的均匀性, 减少NO x 等有害气体的生成, 又减小高温下脱碳的发生。因此, 在喷口设计上要选择最优的气体出口速度和混合喷射角度。  燃料在喷口处边混合边燃烧, 空气、煤气在喷出过程中卷入周围的炉气, 稀释空煤气浓度, 低氧燃烧, 使烟气中NO x 的产生大大降低, 减少了有害气体的排放量。由于采用集中点火烘炉方式, 只要炉气温度高于700 ℃, 高炉煤气喷入炉内就会燃烧, 且连续式加热炉并不会频繁地冷炉启动, 因此将高温段蓄热式烧嘴配带自动点火及火焰检测系统是没有必要的, 这样既简化了烧嘴结构、降低了投资, 也减少了高温段存在的点火烧嘴经常烧损的情况。  3. 2  蓄热体  蓄热体有陶瓷小球和陶瓷蜂窝体, 发展趋势是采用陶瓷蜂窝体。其高温段材质为高纯铝质材料,有较高的耐火度和良好的抗渣性; 中部采用莫来石材料; 低温段材质为堇青石, 其特点是在低于1000 ℃的工况下具有较好的抗腐蚀和耐急冷急热性。蜂窝体的前端增加刚玉挡砖, 减少高温炉膛对蜂窝体的辐射, 同时可增加蜂窝体的堆放稳定性。与颗粒状蓄热体(球形蓄热体) 比较, 蜂窝状蓄热体有如下优点:单位体积换热面积大, 100 孔/平方英寸的蜂窝体是Φ15 mm 球比表面积的5. 5 倍, Φ20 mm 球的7 倍。在相同条件下, 将等质量气体换热到同一温度时的蜂窝体体积仅为球状蓄热体的1/3~1/4 , 重量仅为球的1/10 左右, 这就意味着蜂窝体蓄热燃烧器构造更轻便、结构更紧凑。蜂窝体壁很薄仅0. 5 ~1 mm , 透热深度小, 因而蓄热、放热速度快, 温度效率高, 换向时间仅为30 ~45 s , 这比球状蓄热体的换向时间3 min 大大缩短, 更利于均匀炉内温度场, 保证钢坯均匀加热, 这一点对加热合金钢、高碳钢尤为有利。按照蜂窝体内气流通道规则, 阻力损失仅为球状的1/3~1/4。球形蓄热体气流阻力损失随空气流速增大而增大, 其变化规律为幂函数关系, 球径大则阻力变小, 但蓄热室结构也要相应增大。  蜂窝体  由于有较高压力的气体频繁换向, 起到了吹刷通道作用, 故不易产生灰尘沉积堵塞。对于炉膛较宽的炉子, 相对应炉长较短, 炉两侧可供布置烧嘴的空间较小, 采用比表面积小的小球时常常由于空间的限制使得蓄热能力不足。因此, 在采用蓄热式烧嘴形式的加热炉当中, 应用比表面积大于小球几倍的蜂窝体是必然的选择。采用陶瓷小球不方便在线更换, 而陶瓷蜂窝体则有利于蓄热体的在线更换, 这可以保证非常好的生产连续性。  3. 3  换向系统  高炉煤气换向系统、空气/烟气换向系统均采用全分散换向方式, 换向阀门全部为气动, 以洁净的压缩空气作为动力源, 气源压力≥0. 3 MPa 。高炉煤气/烟气采用快速切断换向阀, 即一只煤气蓄热式烧嘴采用两台快速切断阀, 快切阀采用三偏心结构, 动作灵活、可靠, 更换简单。空气/烟气采用三通换向阀切换, 阀门驱动可采用液动,运行稳定, 但投入成本、运行成本高。  3. 4  工作方式  蓄热燃烧器为成对换向操作, 换向周期可调。正常工作时换向周期30 - 45 s 左右, 采用双重信号控制: 以时间和烟气温度为控制参数。换向系统采用PLC 可编程控制器控制, 可完成自动程序换向控制、手动强制换向控制, 设有功能显示、工作状态显示等, 使操作者对蓄热燃烧系统工作情况一目了然, 操作和监视十分方便。  3. 5  全分散换向系统技术特点  (1) 每个烧嘴的可单独调节和上下加热烧嘴能力的合理搭配, 使加热炉各段上下加热温度的调节非常方便。(2) 在同侧同向换向的基础上, 可以实现每相邻两只烧嘴交错燃烧, 此种方式优化炉膛气流的组成, 有利于均匀炉温, 提高加热质量。(3) 每两组烧嘴使用一套换向系统, 可以在任何一套系统发生故障时, 在其它烧嘴均正常工作的状态下排除故障, 保证操作的连续性和生产稳定性, 而不致于象集中式换向那样要将出现问题的那一段全部停下来。(4) 换向阀可以与燃烧喷口之间就近布置, 减短了换向阀与喷口之间的换向盲区, 最大限度地减少了交叉污染带来的不安全因素。燃烧间断时间短, 因此换向时管道内残留煤气损失较少, 更有利于节能。(5) 采用轮序换向方式, 每套换向装置换向时对炉压的影响大为减小, 精确控制了各部分炉温、炉压, 提高了炉子的控制性能和钢坯加热质量。与集中式换向相比管道复杂, 不容易布置。  3. 6  数字化脉冲蓄热式燃烧技术  在常规分段比例燃烧控制技术的前提下, 可应用数字化脉冲蓄热式燃烧技术。石钢棒材厂加热炉在国内首次采用数字化脉冲蓄热式燃烧技术, 这一技术不仅使蓄热式技术本身的特性得以更高的发挥, 同时非常适应于冷热装变化较大、产量变化较大以及各钢种经常变化的加热要求。由于将原有“段”的概念予以虚拟, 因此可以说此种燃烧方式能够满足任何钢种的加热需求, 为新钢种的开发、生产打下坚实的基础。脉冲技术具有如下特点1) 时序加热。烧嘴只有两种工作状态: 满负荷工作和不工作, 只是通过调整两种状态的时间比进行温度调节, 需要低温控制时仍能保证烧嘴工作在最佳燃烧状态。采用脉冲燃烧控制方式, 可以将煤气压力和空气压力一次性调整到合适值, 在系统投入运行后, 只需保持这两个压力稳定即可。  因此, 烧嘴总是以最大效率、在最小过剩空气量的条件下运行。(2) 实现加热区域任意“虚拟”的划分。虚拟的加热段及均热段(每对烧嘴独立控制) 采用数字化控制技术, 加热炉能力可以根据产量调整, 同时确保产品获得良好的均匀性。计算机可以根据一系列已装炉坯料的热量数据, 对每对烧嘴进行实时设定, 可以设定开或关一些烧嘴, 精确控制加热炉加热能力, 在任何工况条件下, 燃料综合消耗量在整个轧机生产范围内降低。  4  结语  从长期的市场角度看, 钢材多品种、小批量的需求变化日益增加; 从短期的钢坯加热角度看, 钢坯冷热装的情况会经常存在。烧嘴式蓄热式加热炉方案符合上述钢材加热要求。此外, 蓄热式烧嘴式加热炉炉墙两侧留有便于检修的人孔门和扒渣门,这是唯有采用烧嘴结构形式才能做到的; 对于高热值气体燃料, 可直接冷炉点火升温, 不需要单独的点火烧嘴; 维护工作量稍大, 但检修时间短, 停炉时间短。国内蓄热式加热炉发展很快, 现在还不能讲哪一种形式是最先进、最成熟的, 都多少存在一些问题, 蓄热体的寿命、蓄热式加热炉的寿命都有待提高等, 但蓄热式烧嘴式加热炉是一种发展方向。


梦萍 发布于  2022-3-21 23:41 

合金熔化炉

烧嘴式蓄热式加热炉  3. 1  蓄热烧嘴的结构  烧嘴采用空气、煤气组合式, 由空气蓄热烧嘴、煤气蓄热烧嘴组合而成, 上加热煤气喷口在下, 空气喷口在上, 下加热烧嘴则反之; 尽量在钢坯的上下表面形成还原性气氛, 降低氧化烧损和表面脱碳。蓄热式烧嘴的设计既要考虑低热值燃气的燃烧混合问题, 又要保证煤气的完全燃尽, 同时实现炉膛温度的均匀性, 因此采用双流股蓄热式烧嘴形式。  燃烧喷口是燃烧系统的关键部位, 合理的燃烧组织有赖于此, 在燃烧组织上既要确保燃气在炉内充分燃烧, 不会在对面的蓄热体内继续燃烧而对其造成损坏, 同时又要合理促成低氧燃烧的实现, 避免出现局部的高温过热; 既强化炉温的均匀性, 减少NO x 等有害气体的生成, 又减小高温下脱碳的发生。因此, 在喷口设计上要选择最优的气体出口速度和混合喷射角度。  燃料在喷口处边混合边燃烧, 空气、煤气在喷出过程中卷入周围的炉气, 稀释空煤气浓度, 低氧燃烧, 使烟气中NO x 的产生大大降低, 减少了有害气体的排放量。由于采用集中点火烘炉方式, 只要炉气温度高于700 ℃, 高炉煤气喷入炉内就会燃烧, 且连续式加热炉并不会频繁地冷炉启动, 因此将高温段蓄热式烧嘴配带自动点火及火焰检测系统是没有必要的, 这样既简化了烧嘴结构、降低了投资, 也减少了高温段存在的点火烧嘴经常烧损的情况。  3. 2  蓄热体  蓄热体有陶瓷小球和陶瓷蜂窝体, 发展趋势是采用陶瓷蜂窝体。其高温段材质为高纯铝质材料,有较高的耐火度和良好的抗渣性; 中部采用莫来石材料; 低温段材质为堇青石, 其特点是在低于1000 ℃的工况下具有较好的抗腐蚀和耐急冷急热性。蜂窝体的前端增加刚玉挡砖, 减少高温炉膛对蜂窝体的辐射, 同时可增加蜂窝体的堆放稳定性。与颗粒状蓄热体(球形蓄热体) 比较, 蜂窝状蓄热体有如下优点:单位体积换热面积大, 100 孔/平方英寸的蜂窝体是Φ15 mm 球比表面积的5. 5 倍, Φ20 mm 球的7 倍。在相同条件下, 将等质量气体换热到同一温度时的蜂窝体体积仅为球状蓄热体的1/3~1/4 , 重量仅为球的1/10 左右, 这就意味着蜂窝体蓄热燃烧器构造更轻便、结构更紧凑。蜂窝体壁很薄仅0. 5 ~1 mm , 透热深度小, 因而蓄热、放热速度快, 温度效率高, 换向时间仅为30 ~45 s , 这比球状蓄热体的换向时间3 min 大大缩短, 更利于均匀炉内温度场, 保证钢坯均匀加热, 这一点对加热合金钢、高碳钢尤为有利。按照蜂窝体内气流通道规则, 阻力损失仅为球状的1/3~1/4。球形蓄热体气流阻力损失随空气流速增大而增大, 其变化规律为幂函数关系, 球径大则阻力变小, 但蓄热室结构也要相应增大。  蜂窝体  由于有较高压力的气体频繁换向, 起到了吹刷通道作用, 故不易产生灰尘沉积堵塞。对于炉膛较宽的炉子, 相对应炉长较短, 炉两侧可供布置烧嘴的空间较小, 采用比表面积小的小球时常常由于空间的限制使得蓄热能力不足。因此, 在采用蓄热式烧嘴形式的加热炉当中, 应用比表面积大于小球几倍的蜂窝体是必然的选择。采用陶瓷小球不方便在线更换, 而陶瓷蜂窝体则有利于蓄热体的在线更换, 这可以保证非常好的生产连续性。  3. 3  换向系统  高炉煤气换向系统、空气/烟气换向系统均采用全分散换向方式, 换向阀门全部为气动, 以洁净的压缩空气作为动力源, 气源压力≥0. 3 MPa 。高炉煤气/烟气采用快速切断换向阀, 即一只煤气蓄热式烧嘴采用两台快速切断阀, 快切阀采用三偏心结构, 动作灵活、可靠, 更换简单。空气/烟气采用三通换向阀切换, 阀门驱动可采用液动,运行稳定, 但投入成本、运行成本高。  3. 4  工作方式  蓄热燃烧器为成对换向操作, 换向周期可调。正常工作时换向周期30 - 45 s 左右, 采用双重信号控制: 以时间和烟气温度为控制参数。换向系统采用PLC 可编程控制器控制, 可完成自动程序换向控制、手动强制换向控制, 设有功能显示、工作状态显示等, 使操作者对蓄热燃烧系统工作情况一目了然, 操作和监视十分方便。  3. 5  全分散换向系统技术特点  (1) 每个烧嘴的可单独调节和上下加热烧嘴能力的合理搭配, 使加热炉各段上下加热温度的调节非常方便。(2) 在同侧同向换向的基础上, 可以实现每相邻两只烧嘴交错燃烧, 此种方式优化炉膛气流的组成, 有利于均匀炉温, 提高加热质量。(3) 每两组烧嘴使用一套换向系统, 可以在任何一套系统发生故障时, 在其它烧嘴均正常工作的状态下排除故障, 保证操作的连续性和生产稳定性, 而不致于象集中式换向那样要将出现问题的那一段全部停下来。(4) 换向阀可以与燃烧喷口之间就近布置, 减短了换向阀与喷口之间的换向盲区, 最大限度地减少了交叉污染带来的不安全因素。燃烧间断时间短, 因此换向时管道内残留煤气损失较少, 更有利于节能。(5) 采用轮序换向方式, 每套换向装置换向时对炉压的影响大为减小, 精确控制了各部分炉温、炉压, 提高了炉子的控制性能和钢坯加热质量。与集中式换向相比管道复杂, 不容易布置。  3. 6  数字化脉冲蓄热式燃烧技术  在常规分段比例燃烧控制技术的前提下, 可应用数字化脉冲蓄热式燃烧技术。石钢棒材厂加热炉在国内首次采用数字化脉冲蓄热式燃烧技术, 这一技术不仅使蓄热式技术本身的特性得以更高的发挥, 同时非常适应于冷热装变化较大、产量变化较大以及各钢种经常变化的加热要求。由于将原有“段”的概念予以虚拟, 因此可以说此种燃烧方式能够满足任何钢种的加热需求, 为新钢种的开发、生产打下坚实的基础。脉冲技术具有如下特点1) 时序加热。烧嘴只有两种工作状态: 满负荷工作和不工作, 只是通过调整两种状态的时间比进行温度调节, 需要低温控制时仍能保证烧嘴工作在最佳燃烧状态。采用脉冲燃烧控制方式, 可以将煤气压力和空气压力一次性调整到合适值, 在系统投入运行后, 只需保持这两个压力稳定即可。  因此, 烧嘴总是以最大效率、在最小过剩空气量的条件下运行。(2) 实现加热区域任意“虚拟”的划分。虚拟的加热段及均热段(每对烧嘴独立控制) 采用数字化控制技术, 加热炉能力可以根据产量调整, 同时确保产品获得良好的均匀性。计算机可以根据一系列已装炉坯料的热量数据, 对每对烧嘴进行实时设定, 可以设定开或关一些烧嘴, 精确控制加热炉加热能力, 在任何工况条件下, 燃料综合消耗量在整个轧机生产范围内降低。  4  结语  从长期的市场角度看, 钢材多品种、小批量的需求变化日益增加; 从短期的钢坯加热角度看, 钢坯冷热装的情况会经常存在。烧嘴式蓄热式加热炉方案符合上述钢材加热要求。此外, 蓄热式烧嘴式加热炉炉墙两侧留有便于检修的人孔门和扒渣门,这是唯有采用烧嘴结构形式才能做到的; 对于高热值气体燃料, 可直接冷炉点火升温, 不需要单独的点火烧嘴; 维护工作量稍大, 但检修时间短, 停炉时间短。国内蓄热式加热炉发展很快, 现在还不能讲哪一种形式是最先进、最成熟的, 都多少存在一些问题, 蓄热体的寿命、蓄热式加热炉的寿命都有待提高等, 但蓄热式烧嘴式加热炉是一种发展方向。


梦萍 发布于  2022-3-21 23:40 

高温熔炼炉设备

烧嘴式蓄热式加热炉  3. 1  蓄热烧嘴的结构  烧嘴采用空气、煤气组合式, 由空气蓄热烧嘴、煤气蓄热烧嘴组合而成, 上加热煤气喷口在下, 空气喷口在上, 下加热烧嘴则反之; 尽量在钢坯的上下表面形成还原性气氛, 降低氧化烧损和表面脱碳。蓄热式烧嘴的设计既要考虑低热值燃气的燃烧混合问题, 又要保证煤气的完全燃尽, 同时实现炉膛温度的均匀性, 因此采用双流股蓄热式烧嘴形式。  燃烧喷口是燃烧系统的关键部位, 合理的燃烧组织有赖于此, 在燃烧组织上既要确保燃气在炉内充分燃烧, 不会在对面的蓄热体内继续燃烧而对其造成损坏, 同时又要合理促成低氧燃烧的实现, 避免出现局部的高温过热; 既强化炉温的均匀性, 减少NO x 等有害气体的生成, 又减小高温下脱碳的发生。因此, 在喷口设计上要选择最优的气体出口速度和混合喷射角度。  燃料在喷口处边混合边燃烧, 空气、煤气在喷出过程中卷入周围的炉气, 稀释空煤气浓度, 低氧燃烧, 使烟气中NO x 的产生大大降低, 减少了有害气体的排放量。由于采用集中点火烘炉方式, 只要炉气温度高于700 ℃, 高炉煤气喷入炉内就会燃烧, 且连续式加热炉并不会频繁地冷炉启动, 因此将高温段蓄热式烧嘴配带自动点火及火焰检测系统是没有必要的, 这样既简化了烧嘴结构、降低了投资, 也减少了高温段存在的点火烧嘴经常烧损的情况。  3. 2  蓄热体  蓄热体有陶瓷小球和陶瓷蜂窝体, 发展趋势是采用陶瓷蜂窝体。其高温段材质为高纯铝质材料,有较高的耐火度和良好的抗渣性; 中部采用莫来石材料; 低温段材质为堇青石, 其特点是在低于1000 ℃的工况下具有较好的抗腐蚀和耐急冷急热性。蜂窝体的前端增加刚玉挡砖, 减少高温炉膛对蜂窝体的辐射, 同时可增加蜂窝体的堆放稳定性。与颗粒状蓄热体(球形蓄热体) 比较, 蜂窝状蓄热体有如下优点:单位体积换热面积大, 100 孔/平方英寸的蜂窝体是Φ15 mm 球比表面积的5. 5 倍, Φ20 mm 球的7 倍。在相同条件下, 将等质量气体换热到同一温度时的蜂窝体体积仅为球状蓄热体的1/3~1/4 , 重量仅为球的1/10 左右, 这就意味着蜂窝体蓄热燃烧器构造更轻便、结构更紧凑。蜂窝体壁很薄仅0. 5 ~1 mm , 透热深度小, 因而蓄热、放热速度快, 温度效率高, 换向时间仅为30 ~45 s , 这比球状蓄热体的换向时间3 min 大大缩短, 更利于均匀炉内温度场, 保证钢坯均匀加热, 这一点对加热合金钢、高碳钢尤为有利。按照蜂窝体内气流通道规则, 阻力损失仅为球状的1/3~1/4。球形蓄热体气流阻力损失随空气流速增大而增大, 其变化规律为幂函数关系, 球径大则阻力变小, 但蓄热室结构也要相应增大。  蜂窝体  由于有较高压力的气体频繁换向, 起到了吹刷通道作用, 故不易产生灰尘沉积堵塞。对于炉膛较宽的炉子, 相对应炉长较短, 炉两侧可供布置烧嘴的空间较小, 采用比表面积小的小球时常常由于空间的限制使得蓄热能力不足。因此, 在采用蓄热式烧嘴形式的加热炉当中, 应用比表面积大于小球几倍的蜂窝体是必然的选择。采用陶瓷小球不方便在线更换, 而陶瓷蜂窝体则有利于蓄热体的在线更换, 这可以保证非常好的生产连续性。  3. 3  换向系统  高炉煤气换向系统、空气/烟气换向系统均采用全分散换向方式, 换向阀门全部为气动, 以洁净的压缩空气作为动力源, 气源压力≥0. 3 MPa 。高炉煤气/烟气采用快速切断换向阀, 即一只煤气蓄热式烧嘴采用两台快速切断阀, 快切阀采用三偏心结构, 动作灵活、可靠, 更换简单。空气/烟气采用三通换向阀切换, 阀门驱动可采用液动,运行稳定, 但投入成本、运行成本高。  3. 4  工作方式  蓄热燃烧器为成对换向操作, 换向周期可调。正常工作时换向周期30 - 45 s 左右, 采用双重信号控制: 以时间和烟气温度为控制参数。换向系统采用PLC 可编程控制器控制, 可完成自动程序换向控制、手动强制换向控制, 设有功能显示、工作状态显示等, 使操作者对蓄热燃烧系统工作情况一目了然, 操作和监视十分方便。  3. 5  全分散换向系统技术特点  (1) 每个烧嘴的可单独调节和上下加热烧嘴能力的合理搭配, 使加热炉各段上下加热温度的调节非常方便。(2) 在同侧同向换向的基础上, 可以实现每相邻两只烧嘴交错燃烧, 此种方式优化炉膛气流的组成, 有利于均匀炉温, 提高加热质量。(3) 每两组烧嘴使用一套换向系统, 可以在任何一套系统发生故障时, 在其它烧嘴均正常工作的状态下排除故障, 保证操作的连续性和生产稳定性, 而不致于象集中式换向那样要将出现问题的那一段全部停下来。(4) 换向阀可以与燃烧喷口之间就近布置, 减短了换向阀与喷口之间的换向盲区, 最大限度地减少了交叉污染带来的不安全因素。燃烧间断时间短, 因此换向时管道内残留煤气损失较少, 更有利于节能。(5) 采用轮序换向方式, 每套换向装置换向时对炉压的影响大为减小, 精确控制了各部分炉温、炉压, 提高了炉子的控制性能和钢坯加热质量。与集中式换向相比管道复杂, 不容易布置。  3. 6  数字化脉冲蓄热式燃烧技术  在常规分段比例燃烧控制技术的前提下, 可应用数字化脉冲蓄热式燃烧技术。石钢棒材厂加热炉在国内首次采用数字化脉冲蓄热式燃烧技术, 这一技术不仅使蓄热式技术本身的特性得以更高的发挥, 同时非常适应于冷热装变化较大、产量变化较大以及各钢种经常变化的加热要求。由于将原有“段”的概念予以虚拟, 因此可以说此种燃烧方式能够满足任何钢种的加热需求, 为新钢种的开发、生产打下坚实的基础。脉冲技术具有如下特点1) 时序加热。烧嘴只有两种工作状态: 满负荷工作和不工作, 只是通过调整两种状态的时间比进行温度调节, 需要低温控制时仍能保证烧嘴工作在最佳燃烧状态。采用脉冲燃烧控制方式, 可以将煤气压力和空气压力一次性调整到合适值, 在系统投入运行后, 只需保持这两个压力稳定即可。  因此, 烧嘴总是以最大效率、在最小过剩空气量的条件下运行。(2) 实现加热区域任意“虚拟”的划分。虚拟的加热段及均热段(每对烧嘴独立控制) 采用数字化控制技术, 加热炉能力可以根据产量调整, 同时确保产品获得良好的均匀性。计算机可以根据一系列已装炉坯料的热量数据, 对每对烧嘴进行实时设定, 可以设定开或关一些烧嘴, 精确控制加热炉加热能力, 在任何工况条件下, 燃料综合消耗量在整个轧机生产范围内降低。  4  结语  从长期的市场角度看, 钢材多品种、小批量的需求变化日益增加; 从短期的钢坯加热角度看, 钢坯冷热装的情况会经常存在。烧嘴式蓄热式加热炉方案符合上述钢材加热要求。此外, 蓄热式烧嘴式加热炉炉墙两侧留有便于检修的人孔门和扒渣门,这是唯有采用烧嘴结构形式才能做到的; 对于高热值气体燃料, 可直接冷炉点火升温, 不需要单独的点火烧嘴; 维护工作量稍大, 但检修时间短, 停炉时间短。国内蓄热式加热炉发展很快, 现在还不能讲哪一种形式是最先进、最成熟的, 都多少存在一些问题, 蓄热体的寿命、蓄热式加热炉的寿命都有待提高等, 但蓄热式烧嘴式加热炉是一种发展方向。


梦萍 发布于  2022-3-21 23:39 

加热炉构造及各部分的作用

烧嘴式蓄热式加热炉  3. 1  蓄热烧嘴的结构  烧嘴采用空气、煤气组合式, 由空气蓄热烧嘴、煤气蓄热烧嘴组合而成, 上加热煤气喷口在下, 空气喷口在上, 下加热烧嘴则反之; 尽量在钢坯的上下表面形成还原性气氛, 降低氧化烧损和表面脱碳。蓄热式烧嘴的设计既要考虑低热值燃气的燃烧混合问题, 又要保证煤气的完全燃尽, 同时实现炉膛温度的均匀性, 因此采用双流股蓄热式烧嘴形式。  燃烧喷口是燃烧系统的关键部位, 合理的燃烧组织有赖于此, 在燃烧组织上既要确保燃气在炉内充分燃烧, 不会在对面的蓄热体内继续燃烧而对其造成损坏, 同时又要合理促成低氧燃烧的实现, 避免出现局部的高温过热; 既强化炉温的均匀性, 减少NO x 等有害气体的生成, 又减小高温下脱碳的发生。因此, 在喷口设计上要选择最优的气体出口速度和混合喷射角度。  燃料在喷口处边混合边燃烧, 空气、煤气在喷出过程中卷入周围的炉气, 稀释空煤气浓度, 低氧燃烧, 使烟气中NO x 的产生大大降低, 减少了有害气体的排放量。由于采用集中点火烘炉方式, 只要炉气温度高于700 ℃, 高炉煤气喷入炉内就会燃烧, 且连续式加热炉并不会频繁地冷炉启动, 因此将高温段蓄热式烧嘴配带自动点火及火焰检测系统是没有必要的, 这样既简化了烧嘴结构、降低了投资, 也减少了高温段存在的点火烧嘴经常烧损的情况。  3. 2  蓄热体  蓄热体有陶瓷小球和陶瓷蜂窝体, 发展趋势是采用陶瓷蜂窝体。其高温段材质为高纯铝质材料,有较高的耐火度和良好的抗渣性; 中部采用莫来石材料; 低温段材质为堇青石, 其特点是在低于1000 ℃的工况下具有较好的抗腐蚀和耐急冷急热性。蜂窝体的前端增加刚玉挡砖, 减少高温炉膛对蜂窝体的辐射, 同时可增加蜂窝体的堆放稳定性。与颗粒状蓄热体(球形蓄热体) 比较, 蜂窝状蓄热体有如下优点:单位体积换热面积大, 100 孔/平方英寸的蜂窝体是Φ15 mm 球比表面积的5. 5 倍, Φ20 mm 球的7 倍。在相同条件下, 将等质量气体换热到同一温度时的蜂窝体体积仅为球状蓄热体的1/3~1/4 , 重量仅为球的1/10 左右, 这就意味着蜂窝体蓄热燃烧器构造更轻便、结构更紧凑。蜂窝体壁很薄仅0. 5 ~1 mm , 透热深度小, 因而蓄热、放热速度快, 温度效率高, 换向时间仅为30 ~45 s , 这比球状蓄热体的换向时间3 min 大大缩短, 更利于均匀炉内温度场, 保证钢坯均匀加热, 这一点对加热合金钢、高碳钢尤为有利。按照蜂窝体内气流通道规则, 阻力损失仅为球状的1/3~1/4。球形蓄热体气流阻力损失随空气流速增大而增大, 其变化规律为幂函数关系, 球径大则阻力变小, 但蓄热室结构也要相应增大。  蜂窝体  由于有较高压力的气体频繁换向, 起到了吹刷通道作用, 故不易产生灰尘沉积堵塞。对于炉膛较宽的炉子, 相对应炉长较短, 炉两侧可供布置烧嘴的空间较小, 采用比表面积小的小球时常常由于空间的限制使得蓄热能力不足。因此, 在采用蓄热式烧嘴形式的加热炉当中, 应用比表面积大于小球几倍的蜂窝体是必然的选择。采用陶瓷小球不方便在线更换, 而陶瓷蜂窝体则有利于蓄热体的在线更换, 这可以保证非常好的生产连续性。  3. 3  换向系统  高炉煤气换向系统、空气/烟气换向系统均采用全分散换向方式, 换向阀门全部为气动, 以洁净的压缩空气作为动力源, 气源压力≥0. 3 MPa 。高炉煤气/烟气采用快速切断换向阀, 即一只煤气蓄热式烧嘴采用两台快速切断阀, 快切阀采用三偏心结构, 动作灵活、可靠, 更换简单。空气/烟气采用三通换向阀切换, 阀门驱动可采用液动,运行稳定, 但投入成本、运行成本高。  3. 4  工作方式  蓄热燃烧器为成对换向操作, 换向周期可调。正常工作时换向周期30 - 45 s 左右, 采用双重信号控制: 以时间和烟气温度为控制参数。换向系统采用PLC 可编程控制器控制, 可完成自动程序换向控制、手动强制换向控制, 设有功能显示、工作状态显示等, 使操作者对蓄热燃烧系统工作情况一目了然, 操作和监视十分方便。  3. 5  全分散换向系统技术特点  (1) 每个烧嘴的可单独调节和上下加热烧嘴能力的合理搭配, 使加热炉各段上下加热温度的调节非常方便。(2) 在同侧同向换向的基础上, 可以实现每相邻两只烧嘴交错燃烧, 此种方式优化炉膛气流的组成, 有利于均匀炉温, 提高加热质量。(3) 每两组烧嘴使用一套换向系统, 可以在任何一套系统发生故障时, 在其它烧嘴均正常工作的状态下排除故障, 保证操作的连续性和生产稳定性, 而不致于象集中式换向那样要将出现问题的那一段全部停下来。(4) 换向阀可以与燃烧喷口之间就近布置, 减短了换向阀与喷口之间的换向盲区, 最大限度地减少了交叉污染带来的不安全因素。燃烧间断时间短, 因此换向时管道内残留煤气损失较少, 更有利于节能。(5) 采用轮序换向方式, 每套换向装置换向时对炉压的影响大为减小, 精确控制了各部分炉温、炉压, 提高了炉子的控制性能和钢坯加热质量。与集中式换向相比管道复杂, 不容易布置。  3. 6  数字化脉冲蓄热式燃烧技术  在常规分段比例燃烧控制技术的前提下, 可应用数字化脉冲蓄热式燃烧技术。石钢棒材厂加热炉在国内首次采用数字化脉冲蓄热式燃烧技术, 这一技术不仅使蓄热式技术本身的特性得以更高的发挥, 同时非常适应于冷热装变化较大、产量变化较大以及各钢种经常变化的加热要求。由于将原有“段”的概念予以虚拟, 因此可以说此种燃烧方式能够满足任何钢种的加热需求, 为新钢种的开发、生产打下坚实的基础。脉冲技术具有如下特点1) 时序加热。烧嘴只有两种工作状态: 满负荷工作和不工作, 只是通过调整两种状态的时间比进行温度调节, 需要低温控制时仍能保证烧嘴工作在最佳燃烧状态。采用脉冲燃烧控制方式, 可以将煤气压力和空气压力一次性调整到合适值, 在系统投入运行后, 只需保持这两个压力稳定即可。  因此, 烧嘴总是以最大效率、在最小过剩空气量的条件下运行。(2) 实现加热区域任意“虚拟”的划分。虚拟的加热段及均热段(每对烧嘴独立控制) 采用数字化控制技术, 加热炉能力可以根据产量调整, 同时确保产品获得良好的均匀性。计算机可以根据一系列已装炉坯料的热量数据, 对每对烧嘴进行实时设定, 可以设定开或关一些烧嘴, 精确控制加热炉加热能力, 在任何工况条件下, 燃料综合消耗量在整个轧机生产范围内降低。  4  结语  从长期的市场角度看, 钢材多品种、小批量的需求变化日益增加; 从短期的钢坯加热角度看, 钢坯冷热装的情况会经常存在。烧嘴式蓄热式加热炉方案符合上述钢材加热要求。此外, 蓄热式烧嘴式加热炉炉墙两侧留有便于检修的人孔门和扒渣门,这是唯有采用烧嘴结构形式才能做到的; 对于高热值气体燃料, 可直接冷炉点火升温, 不需要单独的点火烧嘴; 维护工作量稍大, 但检修时间短, 停炉时间短。国内蓄热式加热炉发展很快, 现在还不能讲哪一种形式是最先进、最成熟的, 都多少存在一些问题, 蓄热体的寿命、蓄热式加热炉的寿命都有待提高等, 但蓄热式烧嘴式加热炉是一种发展方向。


梦萍 发布于  2022-3-21 23:39 

变电站一次设备和二次设备分别包括哪些?

一次设备主要有:

主变压器及其附属设备,GIS设备,开关柜设备,接地变压器。站用变压器,动态无功补偿装置,其他附属设备如中性点接地隔离开关、中性点避雷器、零序电流互感器等。

二次设备有:

1、综合自动化设备:其中包括线路保护测控柜,主变压器保护测控柜,电能计量屏,频率电压紧急控制装置,电能质量监测柜,二次安防设备,电力调度数据网接入设备柜,升压站微机监控系统,电压无功控制装置,通信接口柜,主机、工程师、远动等三种工作站,微机五防系统,网络设备,卫星对时装置,视频监视及门禁系统等。

2、一体化电源系统:其中包括直流电源成套装置,交流不间断电源(UPS)。

3、通信设备:光端机,综合配线柜,程控调度交换机,数据通信网设备等设备。


梦萍 发布于  2022-3-21 23:36 

热工设备和电厂设备各包括什么?

1.DCS系统控制柜DPU及工程师站、操作员站,卡件等维护。

2.PLC控制维护。

3.现场所有的电动、气动调节门(包括定位器,减压阀,气源,闭锁阀)。

4.所有电磁阀。

5.所有温度测点。

6.所有变送器。



电力设备(电炉变压器、整流器、变频器等)


梦萍 发布于  2022-3-21 23:35 

发电厂设备颜色标准

一次风机:

干燥燃料,将燃料送入炉膛,一般采用离心式风机。

送风机:

克服空气预热器、风道、燃烧器阻力,输送燃烧风,维持燃料充分燃烧。

引风机:

将烟气排除,维持炉膛压力,形成流动烟气,完成烟气及空气的热交换。

磨煤机:

将原煤磨成需要细度的煤粉,完成粗细粉分离及干燥。

空预器:

空气预热器是利用锅炉尾部烟气热量来加热燃烧所需空气的一种热交换装置。提高锅炉效率,提高燃烧空气温度,减少燃料不完全燃烧热损失。空预器分为导热式和回转式。回转式是将烟气热量传导给蓄热元件,蓄热元件将热量传导给一、二次风,回转式空气预热器的漏风系数在8~10%。

炉水循环泵:

建立和维持锅炉内部介质的循环,完成介质循环加热的过程。

燃烧器:

将携带煤粉的一次风和助燃的二次风送入炉膛,并组织一定的气流结构,使煤粉能迅速稳定的着火,同时使煤粉和空气合理混合,达到煤粉在炉内迅速完全燃烧。煤粉燃烧器可分为直流燃烧器和旋流燃烧器两大类。

汽轮机本体:

汽轮机本体是完成蒸汽热能转换为机械能的汽轮机组的基本部分,即汽轮机本身。它与回热加热系统、调节保安系统、油系统、凝汽系统以及其他辅助设备共同组成汽轮机组。汽轮机本体由固定部分(静子)和转动部分(转子)组成。固定部分包括汽缸、隔板、喷嘴、汽封、紧固件和轴承等。转动部分包括主轴、叶轮或轮鼓、叶片和联轴器等。固定部分的喷嘴、隔板与转动部分的叶轮、叶片组成蒸汽热能转换为机械能的通流部分。汽缸是约束高压蒸汽不得外泄的外壳。汽轮机本体还设有汽封系统。

汽轮机:

汽轮机是一种将蒸汽的热势能转换成机械能的旋转原动机。分冲动式和反动式汽轮机。

给水泵:

将除氧水箱的凝结水通过给水泵提高压力,经过高压加热器加热后,输送到锅炉省煤器入口,作为锅炉主给水。

高低压加热器:

利用汽轮机抽汽,对给水、凝结水进行加热,其目的是提高整个热力系统经济性。

除氧器:

除去锅炉给水中的各种气体,主要是水中的游离氧。

凝汽器:

使汽轮机排汽口形成最佳真空,使工质膨胀到最低压力,尽可能多地将蒸汽热能转换为机械能,将乏汽凝结成水。

凝结泵:

将凝汽器的凝结水通过各级低压加热器补充到除氧器。

油系统设备:

一是为汽轮机的调节和保护系统提供工作用油,二是向汽轮机和发电机的各轴承供应大量的润滑油和冷却油。主要设备包括主油箱、主油泵、交直流油泵、冷油器、油净化装置等。

在发电厂中,同步发电机是将机械能转变成电能的唯一电气设备。因而将一次能源(水力、煤、油、风力、原子能等)转换为二次能源的发电机,现在几乎都是采用三相交流同步发电机。在发电厂中的交流同步发电机,电枢是静止的,磁极由原动机拖动旋转。其励磁方式为发电机的励磁线圈FLQ(即转子绕组)由同轴的并激直流励磁机经电刷及滑环来供电。同步发电机由定子(固定部分)和转子(转动部分)两部分组成。定子由定子铁心、定子线圈、机座、端盖、风道等组成。定子铁心和线圈是磁和电通过的部分,其他部分起着固定、支持和冷却的作用。

转子由转子本体、护环、心环、转子线圈、滑环、同轴激磁机电枢组成。

主变压器:

利用电磁感应原理,可以把一种电压的交流电能转换成同频率的另一种电压等级的交流电的一种设备。 6KV、380V配电装置:完成电能分配,控制设备的装置。

电机:

将电能转换成机械能或将机械能转换成电能的电能转换器。

蓄电池:

指放电后经充电能复原继续使用的化学电池。在供电系统中,过去多用铅酸蓄电池,现多采用镉镍蓄电池

控制盘:

有独立的支架,支架上有金属或绝缘底板或横梁,各种电子器件和电器元件安装在底板或横梁上的一种屏式的电控设备。


梦萍 发布于  2022-3-21 23:34 

发电厂电气设备及运行总结

一次风机:

干燥燃料,将燃料送入炉膛,一般采用离心式风机。

送风机:

克服空气预热器、风道、燃烧器阻力,输送燃烧风,维持燃料充分燃烧。

引风机:

将烟气排除,维持炉膛压力,形成流动烟气,完成烟气及空气的热交换。

磨煤机:

将原煤磨成需要细度的煤粉,完成粗细粉分离及干燥。

空预器:

空气预热器是利用锅炉尾部烟气热量来加热燃烧所需空气的一种热交换装置。提高锅炉效率,提高燃烧空气温度,减少燃料不完全燃烧热损失。空预器分为导热式和回转式。回转式是将烟气热量传导给蓄热元件,蓄热元件将热量传导给一、二次风,回转式空气预热器的漏风系数在8~10%。

炉水循环泵:

建立和维持锅炉内部介质的循环,完成介质循环加热的过程。

燃烧器:

将携带煤粉的一次风和助燃的二次风送入炉膛,并组织一定的气流结构,使煤粉能迅速稳定的着火,同时使煤粉和空气合理混合,达到煤粉在炉内迅速完全燃烧。煤粉燃烧器可分为直流燃烧器和旋流燃烧器两大类。

汽轮机本体:

汽轮机本体是完成蒸汽热能转换为机械能的汽轮机组的基本部分,即汽轮机本身。它与回热加热系统、调节保安系统、油系统、凝汽系统以及其他辅助设备共同组成汽轮机组。汽轮机本体由固定部分(静子)和转动部分(转子)组成。固定部分包括汽缸、隔板、喷嘴、汽封、紧固件和轴承等。转动部分包括主轴、叶轮或轮鼓、叶片和联轴器等。固定部分的喷嘴、隔板与转动部分的叶轮、叶片组成蒸汽热能转换为机械能的通流部分。汽缸是约束高压蒸汽不得外泄的外壳。汽轮机本体还设有汽封系统。

汽轮机:

汽轮机是一种将蒸汽的热势能转换成机械能的旋转原动机。分冲动式和反动式汽轮机。

给水泵:

将除氧水箱的凝结水通过给水泵提高压力,经过高压加热器加热后,输送到锅炉省煤器入口,作为锅炉主给水。

高低压加热器:

利用汽轮机抽汽,对给水、凝结水进行加热,其目的是提高整个热力系统经济性。

除氧器:

除去锅炉给水中的各种气体,主要是水中的游离氧。

凝汽器:

使汽轮机排汽口形成最佳真空,使工质膨胀到最低压力,尽可能多地将蒸汽热能转换为机械能,将乏汽凝结成水。

凝结泵:

将凝汽器的凝结水通过各级低压加热器补充到除氧器。

油系统设备:

一是为汽轮机的调节和保护系统提供工作用油,二是向汽轮机和发电机的各轴承供应大量的润滑油和冷却油。主要设备包括主油箱、主油泵、交直流油泵、冷油器、油净化装置等。

在发电厂中,同步发电机是将机械能转变成电能的唯一电气设备。因而将一次能源(水力、煤、油、风力、原子能等)转换为二次能源的发电机,现在几乎都是采用三相交流同步发电机。在发电厂中的交流同步发电机,电枢是静止的,磁极由原动机拖动旋转。其励磁方式为发电机的励磁线圈FLQ(即转子绕组)由同轴的并激直流励磁机经电刷及滑环来供电。同步发电机由定子(固定部分)和转子(转动部分)两部分组成。定子由定子铁心、定子线圈、机座、端盖、风道等组成。定子铁心和线圈是磁和电通过的部分,其他部分起着固定、支持和冷却的作用。

转子由转子本体、护环、心环、转子线圈、滑环、同轴激磁机电枢组成。

主变压器:

利用电磁感应原理,可以把一种电压的交流电能转换成同频率的另一种电压等级的交流电的一种设备。 6KV、380V配电装置:完成电能分配,控制设备的装置。

电机:

将电能转换成机械能或将机械能转换成电能的电能转换器。

蓄电池:

指放电后经充电能复原继续使用的化学电池。在供电系统中,过去多用铅酸蓄电池,现多采用镉镍蓄电池

控制盘:

有独立的支架,支架上有金属或绝缘底板或横梁,各种电子器件和电器元件安装在底板或横梁上的一种屏式的电控设备。


梦萍 发布于  2022-3-21 23:33